On the Transformer-SSM Gap

And the Role of the Gather-and-Aggregate Mechanism

Aviv Bick
Carnegie Mellon University

Transformers vs. SSMs

There is a performance gap between Transformers and State-Space Models (SSMs).

Mathematical reasoning, coding, etc.

This gap has been linked to a model's ability to do in-context retrieval [Arora et al.]

present:50, scallops:84, ..., mark:67 The value of the key 'scallops' is VS. SSM Head MLP MLP 84! 333

Memorize the dictionary:

Outline

1. Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.

present:50, scallops:84, ..., mark:67 The value of the key 'scallops' is Retrieve! Attn Head VS. MLP **MLP** SSM Head MLP MLP

333

Retrieve!

84!

Memorize the dictionary:

Outline

Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.
 ⇒ Transformer-SSM performance gap stems from these heads

2. SSMs approximate these heads weakly

3. Hybrid models close the gap!

Memorize the dictionary: present:50, scallops:84, ..., mark:67 The value of the key 'scallops' is Retrieve! VS. MLP **MLP** MLP MLP

555

Retrieve!

84!

MMLU requires extensive **knowledge** across 57 different fields.

SSMs have the knowledge but struggle with MMLU [Waleffe et al.]

How is MMLU different from other benchmarks? It's in the format

is the central node of 802.11 wireless operations.

A. WPA

B. Access Point

C. WAP

D. Access Port

Answer:

VS.

MMLU requires extensive **knowledge** across 57 different fields.

SSMs have the knowledge but struggle with MMLU [Waleffe et al.]

How is MMLU different from other benchmarks? It's in the format

is the central node of 802.11 wireless operations.

A. WPA

B. Access Point

C. WAP

D. Access Port

Answer: WPA Classic format

is the central node of 802.11 wireless operations.

A. WPA

B. Access Point
C. WAP

D. Access Port

Answer: B MMLU format

Gradual Pruning. Prune layers from the end of Llama-3.1-8B

After each prune, we measure how much knowledge is retained

Knowledge extraction is distributed

Minimal Retrieval Tasks
ARC-Challenge, ARC-Easy,
PIQA, Winogrande,
OpenBookQA, HellaSwag

Gradual Pruning. Prune layers from the end of Llama-3.1-8B

After each prune, we measure how much knowledge is retained

- Knowledge extraction is distributed
- L17 removal significantly harms MMLU

Minimal Retrieval Tasks
ARC-Challenge, ARC-Easy,
PIQA, Winogrande,
OpenBookQA, HellaSwag

Individual Pruning. Remove layer, evaluate, and reinsert

• We first remove all layers above L17 from Llama-3.1-8B

Individual Pruning. Remove layer, evaluate, and reinsert

- We first remove all layers above L17 from Llama-3.1-8B
- L16 & L17 removal significantly harms MMLU

Same goes for Falcon-Mamba-7B (based on Mamba-1).

• L35 & L36 removal significantly harms MMLU

Same goes for Llamba-8B (based on Mamba-2).

• L16 & L17 removal significantly harms MMLU

What exactly is happening in those two layers? We probe Llama-3.1-8B's heads.

Heads Pruning. Keeping heads whose removal hurts MMLU

- L16H22 and L17H24 are part of a mechanism for MMLU.
- What's so important about L16H22 and L17H24?

Hea	Heads Kept in a Layer			ics (%)
0-15	16)	17	MMLU	Knowledge Tasks
0,1,,31	22	24	66.32	39.09
0,1,,31	Ø	24	24.36	39.18
0,1,,31	22	Ø	25.59	$\sim \sim $
0,1,,31	Ø	Ø	25.56	= Random
				Guess

We test Llama-3.1-8B on KV-Retrieval with growing dictionary sizes.

Memorize the dictionary:

present:50
scallops:84

•••

psychiatry:67
The value of the key 'scallops' is

We test Llama-3.1-8B on KV-Retrieval with growing dictionary sizes.

• L16H22 removal causes a constant drop.

Memorize the dictionary: present:50 scallops:84

•••

psychiatry:67
The value of the key 'scallops' is

We test Llama-3.1-8B on KV-Retrieval with growing dictionary sizes.

- L16H22 removal causes a constant drop.
- L17H24 removal causes drops as complexity increases.
- \Rightarrow L16H22 & L17H24 are part of a retrieval mechanism.

Memorize the dictionary: present:50 scallops:84

•••

psychiatry:67
The value of the key 'scallops' is

We test Llama-3.1-8B on KV-Retrieval with growing dictionary sizes.

- L16H22 removal causes a constant drop.
- L17H24 removal causes drops as complexity increases.
- \Rightarrow L16H22 & L17H24 are part of a retrieval mechanism.

Heads Kept in a Layer			Metr	ics (%) MMLU difficulty is	`
0-15	16	17	MMLU	Knowledge more retrieval than knowledge	\
0,1,,31	22	24	66.32	39.09	
0,1,,31	Ø	24	24.36	39.18	
0,1,,31	22	Ø	25.59	39.21	
0,1,,31	Ø	Ø	25.56	39.21	

Outline

- 1. Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.
 - ⇒ Transformer-SSM performance gap stems from these heads
- 2. SSMs approximate these heads weakly
- 3. Hybrid models close the gap!

Outline

- 1. Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.
 - ⇒ Transformer-SSM performance gap stems from these heads

How do L16H22 and L17H24 perform it?

• They implement a Gather-and-Aggregate mechanism.

Two heads collaborate to retrieve:

- **Gather Head** condenses token segments (e.g., L16H22),

Two heads collaborate to retrieve:

- **Gather Head** condenses token segments (e.g., L16H22),
- **Aggregate Head** integrates them into representation (e.g., L17H24).

Two heads collaborate to retrieve:

- **Gather Head** condenses token segments (e.g., L16H22),
- **Aggregate Head** integrates them into representation (e.g., L17H24).

____ is the central node of 802.11
wireless operations.\n

A. WPA\nB. Access Point\nC. WAP\n

D. Access Port\nAnswer:

Gather Head

Two heads collaborate to retrieve:

- **Gather Head** condenses token segments (e.g., L16H22),
- **Aggregate Head** integrates them into representation (e.g., L17H24).

```
____ is the central node of 802.11
wireless operations.\n

A. WPA\nB. Access Point\nC. WAP\n

D. Access Port\nAnswer:

Aggregate Head

B!
```


Two heads collaborate to retrieve:

- **Gather Head** condenses token segments (e.g., L16H22),
- **Aggregate Head** integrates them into representation (e.g., L17H24).
- "Content Gatherer" and "Correct Letter" Heads [Lieberum et al.]

Gather Head

Retrieval (and G&A) are implicitly involved in many tasks

- We iteratively ablate each head, measure KV-Retrieval, and reinsert it to rank importance
- Removing top G&A heads impairs retrieval-heavy tasks, while knowledge remains stable

Model	#HEADS	$\begin{array}{c} \text{MMLU} \\ \text{ACC} \uparrow \end{array}$	$_{\text{PPL}}\downarrow$	$\operatorname{GSM8K}$ ACC \uparrow	$\underset{\mathrm{ACC}}{\mathrm{SWDE}}$	BBH acc↑	Knowledge $_{ m ACC}\uparrow$
Llama-3B	0	60.3 (+0.0%)	4.8 (+0.0%)	28.7 (+0.0%)	85.8 (+0.0%)	38.2 (+0.0%)	60.5 (+0.0%)
	10	53.1 (-12.0%)	6.5 (+35.7%)	17.4 (-39.4%)	81.9 (-4.5%)	33.4 (-12.6%)	59.4 (-1.8%)
	20	32.2 (-46.6%)	8.8 (+82.8%)	9.1 (-68.2%)	57.5 (-33.0%)	27.7 (-27.5%)	58.7 (-3.0%)
	30	29.9 (-50.4%)	10.1 (+109%)	5.6 (-80.5%)	47.5 (-44.6%)	25.4 (-33.5%)	58.0 (-4.1%)
Llama-8B	0	68.1 (+0.0%)	3.4 (+0.0%)	27.3 (+0.0%)	90.8 (+0.0%)	45.1 (+0.0%)	68.5 (+0.0%)
	10	61.9 (-9.1%)	4.2 (+22.0%)	21.7 (-20.5%)	87.3 (-3.9%)	37.7 (-16.5%)	67.1 (-2.0%)
	20	38.1 (-44.0%)	6.8 (+98.6%)	9.4 (-65.6%)	79.5 (-12.4%)	29.2 (-35.2%)	64.8 (-5.4%)
	30	38.7 (-43.2%)	7.3 (+115%)	7.8 (-71.4%)	74.0 (-18.5%)	29.0 (-35.7%)	64.4 (-6.0%)

Retrieval (and G&A) can be triggered by task format

- We compare ARC-Challenge in chat vs. completion modes
- Chat requires more reasoning, boosting accuracy
- Removing G&A heads hurts chat more, reducing it to completion-level performance

Model	#Removed Heads	$\frac{\text{ARC-C (CHAT)}}{\text{ACC}}$	$rac{ARC-C}{ACC}$ (Regular)
Llama-3B	0	76.8 (+0.0%)	45.5 (+0.0%)
	10	72.2 (-6.0%)	43.6 (-4.2%)
	20	50.0 (-34.9%)	42.0 (-7.7%)
	30	43.2 (-43.8%)	41.9 (-7.9%)
Llama-8B	0	84.3 (+0.0%)	54.9 (+0.0%)
	10	77.1 (-8.5%)	51.6 (-6.0%)
	20	49.3 (-41.5%)	47.3 (-13.8%)
	30	53.6 (-36.4%)	47.9 (-12.8%)

A mechanistic view of attention-based retrieval

- Attention retrieves well by caching history (intuitive)
- Mechanistically, this enables sharp, noise-free G&A mappings

Not all heads retrieve

- Only a few key heads drive this behavior
- These heads are critical across many tasks

10 11 12 13 14 15 16 17

What about SSMs?

- Visually resemble G&A heads
- But they are noisy...

0.8

0.6

0.4

0.2

• Do they implement G&A?

Masking shows SSMs use G&A.

- A custom mask is generated for each MMLU sample.
- For the **Gather head**, we unmask the answer segments.

Masking shows SSMs use G&A.

- A custom mask is generated for each MMLU sample.
- For the **Aggregate head**, we unmask the summary tokens.

Masking shows SSMs use G&A.

- Recall: Fully masking G&A drops MMLU to nearrandom.
- Preserving only the G&A pattern (with mask) keeps
 MMLU high.

⇒ SSMs develop G&A too!

A mechanistic view of SSM-based retrieval

- Hidden states compress history into one evolving representation
- SSMs implement smoother version of G&A
- This adds noise, reducing G&A power

SSM-based G&A has higher redundancy:

- SSMs are less sensitive to G&A ablation than attention models.
- SSM models compensate for weaker G&A

Model	$\# { m HEADS}$	$\begin{array}{c} \text{MMLU} \\ \text{ACC} \uparrow \end{array}$	$_{\mathrm{PPL}\ \downarrow}^{\mathrm{LAMB.}}$	$\begin{array}{c} \text{SWDE} \\ \text{ACC} \uparrow \end{array}$	$_{ m ACC}\uparrow$	Knowledge $_{ m ACC}\uparrow$
Llama-3B (Transformer)	0 10 20 30	60.3 (+0.0%) 53.1 (-12.0%) 32.2 (-46.6%) 29.9 (-50.4%)	4.8 (+0.0%) 6.5 (+35.7%) 8.8 (+82.8%) 10.1 (+109%)	85.8 (+0.0%) 81.9 (-4.5%) 57.5 (-33.0%) 47.5 (-44.6%)	38.2 (+0.0%) 33.4 (-12.6%) 27.7 (-27.5%) 25.4 (-33.5%)	60.5 (+0.0%) 59.4 (-1.8%) 58.7 (-3.0%) 58.0 (-4.1%)
Llamba-3B (SSM)	0 10 20 30	52.5 (+0.0%) 42.6 (-18.9%) 41.3 (-21.3%) 41.2 (-21.5%)	3.6 (+0.0%) 5.2 (+44.4%) 8.2 (+128%) 9.1 (+153%)	21.3 (+0.0%) 18.6 (-12.7%) 18.1 (-15.0%) 18.1 (-15.0%)	9.2 (+0.0%) 9.0 (-2.2%) 9.0 (-2.2%) 9.0 (-2.2%)	63.8 (+0.0%) 63.7 (-0.2%) 63.1 (-1.1%) 62.6 (-1.9%)

SSM-based G&A struggle to match attention:

- After alignment, each SSM layer mimics its corresponding attention layer.
- Baseline: MMLU is 33% and knowledge is 69%

SSM-based G&A struggle to match attention:

- After alignment, each SSM layer mimics its corresponding attention layer.
- Baseline: MMLU is 33% and knowledge is 69%
- Replacing L17: MMLU is 50% and knowledge remains 69%

Outline

- 1. Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.

 ⇒ Transformer-SSM performance gap stems from these heads
- 2. SSMs approximate these heads weakly
- 3. Hybrid models close the gap!

Hybrid Models

Hybrid models overcome SSMs' retrieval limits

- A few attention layers interleaved with mostly SSMs
- Attention handles aggregation
- SSMs handle language modeling and knowledge

Hybrid Models

Attention handles aggregation:

- Attention-based Aggregates are masked, with SSMs left untouched
- Knowledge tasks remain stable
- Retrieval-heavy tasks drop sharply

Model	$\# { m HEADS}$	$\begin{array}{c} \text{MMLU} \\ \text{ACC} \uparrow \end{array}$	$_{\text{PPL}}\downarrow$	$_{ m ACC}\uparrow$	$\mathop{\rm SWDE}_{\rm ACC}\uparrow$	$_{ ext{ACC}} \uparrow$	Knowledge $_{ m ACC}\uparrow$
Zamba2-2.7B	0	55.7 (+0.0%)	4.2 (+0.0%)	57.4 (+0.0%)	89.5 (+0.0%)	30.6 (+0.0%)	66.8 (+0.0%)
	10	42.4 (-23.9%)	12.8 (+204%)	24.7 (-57.0%)	84.3 (-5.8%)	25.5 (-16.7%)	64.8 (-3.0%)
	20	37.2 (-33.2%)	22.2 (+428%)	6.5 (-88.7%)	74.4 (-16.9%)	17.4 (-43.1%)	62.6 (-6.3%)
Zamba2-7B	0	65.1 (+0.0%)	3.1 (+0.0%)	60.5 (+0.0%)	91.7 (+0.0%)	33.0 (+0.0%)	70.6 (+0.0%)
	20	57.3 (-12.0%)	5.2 (+67.7%)	27.6 (-54.4%)	75.1 (-18.1%)	28.9 (-12.4%)	67.5 (-4.4%)
	40	50.6 (-22.3%)	9.5 (+206%)	14.9 (-75.4%)	41.2 (-55.1%)	21.7 (-34.2%)	67.0 (-5.1%)
	60	36.2 (-44.4%)	19.8 (+538%)	7.2 (-88.1%)	39.6 (-56.8%)	15.9 (-51.8%)	66.5 (-5.8%)

A better strategy to merge their strengths?

Distillation: Keep attention only where needed

- Evaluate each ablated model on synthetic KV-Retrieval
- 2. Sort heads by ablation score

A better strategy to merge their strengths?

Distillation: Keep attention only where needed

- Evaluate each ablated model on synthetic KV-Retrieval
- 2. Sort heads by ablation score
- 3. Retain heads with largest performance drops (they're most critical for retrieval)

Retrieval improves perplexity

Retrieval improves perplexity

Retrieval improves perplexity

• Sharp improvement with top 10–20 G&A heads

Retrieval improves perplexity

- Sharp improvement with top 10–20 G&A heads
- Additional heads provide diminishing returns

Retrieval-heavy scores rise

- Knowledge-focused benchmarks remain the same
- Keeping a handful of G&A heads suffices for retrieval-heavy tasks
- This confirms: Just a few attention heads bottleneck retrieval

MODEL	#ATT HEADS		Knowledge-focuse				D RETRIEVAL-HEAVY					
	ILADS	ARC	CARC	E PIOA	WG.	HS	OBO	LMB	MMI	CSME	KSWDF	KY-Ret
	0	38.0	69.3	74.2	61.7	61.0	36.6	50.7	39.2	25.1	27.7	13.2
	10	37.6	69.0	74.6	60.5	62.0	36.8	54.2	42.1	34.4	71.1	99.0
Hybrid-	20	38.2	69.3	74.5	62.9	61.1	36.5	55.0	43.0	34.0	72.5	99.3
Llamba-1B	30	39.3	69.3	75.0	61.5	62.2	38.4	54.0	43.4	33.1	70.4	98.0
	40	37.5	68.9	73.7	61.8	59.2	37.6	54.0	44.0	34.0	71.1	99.4
LLAMA-3.2-1B	512	38.1	68.5	74.4	59.7	60.8	34.6	60.1	46.0	33.1	78.6	99.3

Fewer heads, simpler backbone

- Attention heads handle retrieval
- Recurrent state no longer needs to serve as memory

STATE	Knowledge-focused							RETRIEVAL-HEAVY				
Size -	ARC.C	ARC.E	PIOA	WG	HS	OBOA	LMB	MMILL	GSM8K	SWDE	KV-Ret	
4 8 64	37.4 38.1 38.2	68.2 69.6 69.3	74.6 74.0 74.5	61.6 61.9 62.9	60.2 61.3 61.1	37.6 38.2 36.5	50.6 51.1 55.0	37.0 41.0 43.0	27.8 30.1 34.0	69.0 71.0 72.5	72.6 90.0 99.3	

Reducing attention heads and state size matters:

Inference is bottlenecked by repeated loading of weights and memory from HBM. Hybrid-Llamba improves that:

- Compact SSM states (for short sequences),
- Fewer attention heads (reducing KV cache for long sequences).

Model	$L\!=\!128$	$L\!=\!2048$	$L\!=\!4096$		
Hybrid-Llamba	1.2 MB (×1.0)	11.0 MB (×1.0)	21.5 MB (×1.0)		
HYBRID-MOHAWK	2.3 MB (×2.0)	19.5 MB (×1.8)	37.8 MB (×1.8)		
MAMBA-IN-LLAMA	4.2 MB (×3.5)	35.7 MB (×3.2)	69.2 MB (×3.2)		
LLAMA-3.2-1B	$4.2 \text{ MB} (\times 3.5)$	67.1 MB (×6.1)	134.2 MB (×6.2)		

Outline

- 1. Retrieval in both Transformers and SSMs is performed similarly, in just a few heads.

 ⇒ Transformer-SSM performance gap stems from these heads
- 2. SSMs approximate these heads weakly
- 3. Hybrid models close the gap!

What's next

- Can we promote specific heads to exhibit G&A behavior?
- Can we better quantify and prioritize G&A?
- Are G&A heads mutually exclusive in function or complementary?
 - Some G&A heads may be format-sensitive.
 - Our goal is to import the strongest ones across formats.

Aviv Bick

Eric Xing

Albert Gu

Thanks!

Experiments

goombalab/Gather-and-Aggregate

Contact

abick@cs.cmu.edu

avivbick